Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 832
Filtrar
1.
Int J Med Mushrooms ; 26(3): 55-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505903

RESUMO

Leukemia can be a result of genetic changes associated with protein tyrosine kinase activity such as in MPL W515L and BCR/ABL genes. However, the current conventional treatment of leukemia produces severe side effects that urge the approach to use natural products. A medicinal mushroom, Lignosus rhinocerus shows potential as an anti-cancer treatment. To investigate the efficacy and mechanism of action of the L. rhinocerus cultivar (TM02®) extract on leukemogenic tyrosine kinase cell lines, a cold-water extract (CWE) was produced by using TM02® sclerotia powder at 4°C. The carbohydrate and protein contents were found to be 77.24% and 1.75% respectively. In comparison to the normal Ba/F3 cell, the CWE TM02® shows significant effects on exhibiting proliferation of Ba/F3 expressed MPL W515L and BCR/ABL, possibly due to the presence of phenolic compounds and antioxidant properties of TM02®, which contribute to act on various signaling pathways, and the reported apoptotic activity of CWE TM02®. In contrast, CWE TM02® significantly exhibited high scavenging activity of both Ba/F3 expressed MPL W515L and BCR/ABL. At concentrations of 125 µg/mL and 500 µg/mL of CWE TM02® decreased 49.5% and 67.5% of cell migration activity of Ba/F3 expressed MPL W515L and BCR/ABL respectively. Therefore, we postulate that CWE TM02® has the capability to mediate the migration route of the leukemogenic tyrosine kinase cell lines.


Assuntos
Agaricales , Leucemia , Polyporaceae , Humanos , Proteínas Tirosina Quinases , Agaricales/metabolismo , Linhagem Celular
2.
Int J Med Mushrooms ; 26(3): 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505899

RESUMO

Edible mushrooms have rich nutrition (e.g., proteins, dietary fibers, polysaccharides) and they can be potential sources of important ingredients in food processing. However, the cultivation of mushroom fruiting bodies needs a relatively long time, and they can be easily polluted during the growth process. At the same time, a lot of labor and larger planting areas are also required. As we all know, submerged fermentation is a good way to produce edible mushroom mycelia with less environmental pollution and small footprint, which are also rich in nutrition and bioactive components that are used as dietary supplements or health care products in the food industry. Therefore, it can be considered that the replacement of edible mushroom fruiting bodies with edible mushroom mycelia produced through submerged fermentation has great application potential in food production. At present, most of the research about edible mushroom mycelia focuses on the production of bioactive metabolites in fermentation liquid, but there are few reports that concentrate on their applications in food. This paper reviews the research progress of submerged culture of edible mushroom mycelia and their applications in food products.


Assuntos
Agaricales , Agaricales/metabolismo , Suplementos Nutricionais , Fermentação , Fibras na Dieta , Micélio
3.
Int J Med Mushrooms ; 26(4): 63-72, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523450

RESUMO

In the present study, wide diversity in the set and activity of lignin-modifying enzymes (LME) was revealed during submerged fermentation of mandarin peel with 15 strains of white rot Basidiomycetes. Among them, Trametes pubescens BCC153 was distinguished by the simultaneous production of laccase, manganese peroxidase (MnP), and lignin peroxidase (LiP). Supplementation of CuSO4 at a concentration of 1 mM in the media for the cultivation of four Trametes species manifold increased the production of laccase. The diverse effects of chemically different lignocellulosic growth substrates and nitrogen sources on the production of individual LME have been established. The maximum laccase activity of T. pubescens was observed when the fungus was cultivated on media containing mandarin peel and wheat bran, whereas the highest MnP and LiP activities were detected in the submerged fermentation of tobacco residue. Peptone and casein hydrolysate appeared to be the best sources of nitrogen to produce laccase and both peroxidases by T. pubescens BCC153 whereas KNO3 was the worst nitrogen-containing compound for the production of all enzymes.


Assuntos
Agaricales , Agaricales/metabolismo , Lacase/metabolismo , Fermentação , Trametes , Lignina/metabolismo , Nitrogênio
4.
Int J Med Mushrooms ; 26(1): 55-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305262

RESUMO

The liver was regarded as the most important metabolic and detoxification organ in vivo, and Morchella esculenta had been reported as the admittedly rare edible fungus belonging to Ascomycetes contributing to the abundant bioactivities. The objective of this study aimed to confirm the potential antioxidant activities of selenium mycelium polysaccharides (Se-MIP) from M. esculenta against alcoholic liver diseases (ALD) in mice. The results indicated that a selenium concentration of 25 µg/mL exhibited potential in vitro antioxidant capacities of Se-MIP. The in vivo mice results demonstrated that Se-MIP showed potential anti-ALD effects by improving the antioxidant activities and alleviating the hepatic dysfunctions. The present conclusions suggested that Se-MIP could be used as a candidate on improving ALD and its complications for further clinical investigations.


Assuntos
Agaricales , Ascomicetos , Hepatopatias Alcoólicas , Selênio , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Selênio/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Ascomicetos/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Agaricales/metabolismo , Micélio/metabolismo
5.
Food Chem ; 443: 138554, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306912

RESUMO

This study aimed to investigate the flavor changes in Huangshan floral mushroom by different enzyme treatments. Seven enzyme groups were used to hydrolyze its protein to obtain protein hydrolysates (FPHs). Flavourzyme composite with dispase hydrolysates (FDHs) were selected for ultrafiltration to obtain peptides (FPs) with different molecular weights (Mw). Changes in flavor were investigated using HPLC, LC-MS, GC-MS, amino acid analysis and sensory evaluation. Color parameters and DPPH-scavenging activity were also determined. The results revealed that flavor characteristics of FPHs obtained from different enzyme treatments varied. FDHs presented the highest degree of hydrolysis (DH) (58.61 ± 1.55) %, rich 5'-nucleotides (8.61 ± 0.43 mg/mL), volatile compounds (28.54 ± 0.11 µg/g) and free amino acids (FAAs) (7.73 ± 0.51 mg/g). Further tests suggested that FPs with small Mw (<1K, 1-3 K) were optimal for the development of novel flavors, thus providing application value for rational utilization of Huangshan floral mushroom.


Assuntos
Agaricales , Agaricales/metabolismo , Peptídeos/química , Hidrólise , Peptídeo Hidrolases/metabolismo , Antioxidantes/química , Hidrolisados de Proteína/química
6.
Plant Physiol Biochem ; 207: 108332, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224638

RESUMO

Proteins from the glutathione peroxidase (GPX) family, such as GPX4 or PHGPX in animals, are extensively studied for their antioxidant functions and apoptosis inhibition. GPXs can be selenium-independent or selenium-dependent, with selenium acting as a potential cofactor for GPX activity. However, the relationship of plant GPXs to these functions remains unclear. Recent research indicated an upregulation of Theobroma cacao phospholipid hydroperoxide glutathione peroxidase gene (TcPHGPX) expression during early witches' broom disease stages, suggesting the use of antioxidant mechanisms as a plant defense strategy to reduce disease progression. Witches' broom disease, caused by the hemibiotrophic fungus Moniliophthora perniciosa, induces cell death through elicitors like MpNEP2 in advanced infection stages. In this context, in silico and in vitro analyses of TcPHGPX's physicochemical and functional characteristics may elucidate its antioxidant potential and effects against cell death, enhancing understanding of plant GPXs and informing strategies to control witches' broom disease. Results indicated TcPHGPX interaction with selenium compounds, mainly sodium selenite, but without improving the protein function. Protein-protein interaction network suggested cacao GPXs association with glutathione and thioredoxin metabolism, engaging in pathways like signaling, peroxide detection for ABA pathway components, and anthocyanin transport. Tests on tobacco cells revealed that TcPHGPX reduced cell death, associated with decreased membrane damage and H2O2 production induced by MpNEP2. This study is the first functional analysis of TcPHGPX, contributing to knowledge about plant GPXs and supporting studies for witches' broom disease control.


Assuntos
Agaricales , Cacau , Selênio , Cacau/microbiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Selênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Células Vegetais , Agaricales/metabolismo , Morte Celular , Glutationa Peroxidase/metabolismo , Doenças das Plantas/microbiologia
7.
Sci Rep ; 14(1): 1540, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233558

RESUMO

A series of new analogs of 3,5-dihydroxybenzoyl-hydrazineylidene conjugated to different methoxyphenyl triazole (11a-n) synthesized using click reaction. The structures of all synthesized compounds were characterized by FTIR, 1H, 13C-NMR spectroscopy, and CHO analysis. The tyrosinase inhibitory potential of the synthesized compounds was studied. The newly synthesized scaffolds were found to illustrate the variable degree of the inhibitory profile, and the most potent analog of this series was that one bearing 4-methoxyphenyl moiety, and exhibited an IC50 value of 55.39 ± 4.93 µM. The kinetic study of the most potent derivative reveals a competitive mode of inhibition. Next, molecular docking studies were performed to understand the potent inhibitor's binding mode within the enzyme's binding site. Molecular dynamics simulations were accomplished to further investigate the orientation and binding interaction over time and the stability of the 11m-tyrosinase complex.


Assuntos
Agaricales , Monofenol Mono-Oxigenase , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Agaricales/metabolismo , Relação Dose-Resposta a Droga
8.
Int J Biol Macromol ; 261(Pt 1): 129756, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286376

RESUMO

Mushroom polysaccharides exhibit numerous health-enhancing attributes that are intricately linked to the breakdown, assimilation, and exploitation of polysaccharides within the organism. Naematelia aurantialba polysaccharides (NAPS-A), highly prized polysaccharides derived from mushrooms, remain shrouded in uncertainty regarding their characteristics pertaining to gastrointestinal digestion and gut microbial fermentation. The study aimed to understand the digestion and fecal fermentation patterns of NAPS-A. After simulated digestion, NAPS-A's physicochemical properties remained unchanged. However, during in vitro fecal fermentation, indigestible NAPS-A underwent significant changes in various properties, such as reducing sugar, chemical composition, constituent monosaccharides, Molecular weight, apparent viscosity, FT-IR spectra, and microscopic morphology. Notably, NAPS-A was effectively utilized by the gut microbiota, with unchanged properties after digestion but altered after fermentation. It influenced gut microbe composition by increasing beneficial bacteria (Lactobacillus, Faecalibacterium, and Roseburia), lowering pH, and producing short-chain fatty acids. NAPS-A fermentation enriches carbohydrate, fatty acid, and amino acid metabolic pathways through PICRUSt prediction analysis. Overall, these findings emphasize NAPS-A's role in regulating gut bacteria and their metabolic functions, despite its challenging digestibility.


Assuntos
Agaricales , Basidiomycota , Digestão , Fermentação , Espectroscopia de Infravermelho com Transformada de Fourier , Ácidos Graxos Voláteis/metabolismo , Polissacarídeos/metabolismo , Agaricales/metabolismo , Bactérias/metabolismo
9.
Environ Res ; 248: 118297, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38281560

RESUMO

In this work, harvested mushroom substrate (HMS) has been explored for the first time through a comprehensive optimization study for the green synthesis of silver nanoparticles (AgNPs). A multiple response central composite design with three parameters: pH of the reaction mixture, temperature, and incubation period at three distinct levels was employed in the optimization study. The particle size of AgNPs, UV absorbance, and the percentage of Ag/Cl elemental ratio were considered as the response parameters. For each response variable examined the model used was found to be significant (P < 0.05). The ideal conditions were: pH 8.9, a temperature of 59.4 °C, and an incubation period of 48.5 h. The UV-visible spectra of AgNPs indicated that the absorption maxima for AgNP-3 were 414 nm, 420 for AgNPs-2, and 457 for AgNPs-1. The XRD analysis of AgNPs-3 and AgNPs-2 show a large diffraction peak at ∼38.2°, ∼44.2°, ∼64.4°, and ∼77.4°, respectively, which relate to the planes of polycrystalline face-centered cubic (fcc) silver. Additionally, the XRD result of AgNPs-1, reveals diffraction characteristics of AgCl planes (111, 200, 220, 311, 222, and 400). The TEM investigations indicated that the smallest particles were synthesized at pH 9 with average diameters of 35 ± 6 nm (AgNPs-3). The zeta potentials of the AgNPs are -36 (AgNPs-3), -28 (AgNPs-2), and -19 (AgNPs-1) mV, respectively. The distinct IR peak at 3400, 1634, and 1383 cm-1 indicated the typical vibration of phenols, proteins, and alkaloids, respectively. The AgNPs were further evaluated against gram (+) strain Bacillus subtilis (MTCC 736) and gram (-) strain Escherichia coli (MTCC 68). All of the NPs tested positive for antibacterial activity against both bacterial strains. The study makes a sustainable alternative to disposing of HMS to achieve the Sustainable Development Goals (SDGs).


Assuntos
Agaricales , Nanopartículas Metálicas , Prata/química , Agaricales/metabolismo , Nanopartículas Metálicas/química , Extratos Vegetais/química , Antibacterianos/química , Testes de Sensibilidade Microbiana
10.
Brain Res ; 1824: 148693, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036238

RESUMO

Oxidative stress can upset the antioxidant balance and cause accelerated aging including neurodegenerative diseases and decline in physiological function. Therefore, an antioxidant-rich diet plays a crucial role in healthy aging. This study aimed to identify and quantify mushrooms with the highest ergothioneine content through HPLC analysis and evaluate their anti-aging potential as a natural antioxidant and antisenescence in HT22 cells. Among the 14 evaluated mushroom species, Lentinula edodes (LE), shiitake mushroom contains the highest ergothioneine content and hence was used for the in-vitro studies. The cells were preincubated with ethanolic extract of ergothioneine-rich mushroom and the equimolar concentration of EGT on t-BHP-induced senescence HT22 cells. The extract was analyzed for its free radical scavenging properties using DPPH and ABTS methods. Then, the neuroprotective effect was conducted by measuring the cell viability using MTT. Senescence-associated markers and ROS staining were also analyzed. Our results revealed that a low dose of t-BHP reduces cell viability and induces senescence in HT22 cells as determined through ß-galactosidase staining and expressions of P16INK4a, P21CIPL which are the markers of cellular senescence. However, the pretreatment with ethanolic extract of LE for 8 h significantly improved the cell viability, reversed the t-BHP-induced cellular senescence in the neuronal cells, and reduced the reactive oxygen species visualized through DCFH-DA staining. These results suggest that ergothioneine-rich mushroom is a potential candidate for anti-aging exploration through the elimination of senescent cells.


Assuntos
Agaricales , Ergotioneína , Ergotioneína/farmacologia , Ergotioneína/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Agaricales/química , Agaricales/metabolismo , Senescência Celular
11.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958943

RESUMO

Hericium erinaceus is a valuable mushroom known for its strong bioactive properties. It shows promising potential as an excellent neuroprotective agent, capable of stimulating nerve growth factor release, regulating inflammatory processes, reducing oxidative stress, and safeguarding nerve cells from apoptosis. The active compounds in the mushroom, such as erinacines and hericenones, have been the subject of research, providing evidence of their neuroprotective effects. Further research and standardization processes for dietary supplements focused on H. erinaceus are essential to ensuring effectiveness and safety in protecting the nervous system. Advancements in isolation and characterization techniques, along with improved access to pure analytical standards, will play a critical role in achieving standardized, high-quality dietary supplements based on H. erinaceus. The aim of this study is to analyze the protective and nourishing effects of H. erinaceus on the nervous system and present the most up-to-date research findings related to this topic.


Assuntos
Agaricales , Fármacos Neuroprotetores , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Agaricales/metabolismo , Neurônios , Suplementos Nutricionais
12.
Angew Chem Int Ed Engl ; 62(49): e202313817, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37852936

RESUMO

An epoxycyclohexenone (ECH) moiety occurs in natural products of both bacteria and ascomycete and basidiomycete fungi. While the enzymes for ECH formation in bacteria and ascomycetes have been identified and characterized, it remained obscure how this structure is biosynthesized in basidiomycetes. In this study, we i) identified a genetic locus responsible for panepoxydone biosynthesis in the basidiomycete mushroom Panus rudis and ii) biochemically characterized PanH, the cytochrome P450 enzyme catalyzing epoxide formation in this pathway. Using a PanH-producing yeast as a biocatalyst, we synthesized a small library of bioactive ECH compounds as a proof of concept. Furthermore, homology modeling, molecular dynamics simulation, and site directed mutation revealed the substrate specificity of PanH. Remarkably, PanH is unrelated to ECH-forming enzymes in bacteria and ascomycetes, suggesting that mushrooms evolved this biosynthetic capacity convergently and independently of other organisms.


Assuntos
Agaricales , Ascomicetos , Basidiomycota , Agaricales/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Biocatálise , Basidiomycota/genética , Ascomicetos/metabolismo , Bactérias/metabolismo , Especificidade por Substrato
13.
Toxins (Basel) ; 15(9)2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37756004

RESUMO

Ageritin from poplar mushrooms is a specific endonuclease that hydrolyzes a single phosphodiester bond located in the sarcin-ricin loop (SRL) of the large rRNA, thereby blocking protein synthesis. Considering the possible biotechnological use of this enzyme, here we report its antifungal activity against virulent fungi affecting crops of economic interest. Our results show that ageritin (200 µg/plug; ~13.5 nmole) inhibits the growth of Botrytis cinerea (57%), Colletotrichum truncatum (42%), and Alternaria alternata (57%), when tested on potato dextrose agar plates. At the same time, no effect was observed against Trichoderma harzianum (a fungus promoting beneficial effects in plants). To verify whether the antifungal action of ageritin against B. cinerea and T. harzianum was due to ribosome damage, we tested ageritin in vitro on partially isolated B. cinerea and T. harzianum ribosomes. Interestingly, ageritin was able to release the Endo's fragment from both tested fungal ribosomes. We therefore decided to test the antifungal effect of ageritin on B. cinerea and T. harzianum using a different growth condition (liquid medium). Differently from the result in solid medium, ageritin can inhibit both B. cinerea and T. harzianum fungal growth in liquid medium in a concentration-dependent manner up to 35.7% and 38.7%, respectively, at the highest concentration tested (~200 µg/mL; 12 µM), and the analysis of RNA isolated from ageritin-treated cells revealed the presence of Endo's fragment, highlighting its ability to cross the fungal cell wall and reach the ribosomes. Overall, these data highlight that the efficacy of antifungal treatment to prevent or treat a potential fungal disease may depend not only on the fungal species but also on the conditions of toxin application.


Assuntos
Agaricales , Antifúngicos , Antifúngicos/farmacologia , Agaricales/metabolismo , Ribonucleases/metabolismo , Fungos/metabolismo
14.
Biotechnol Adv ; 69: 108247, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37659744

RESUMO

Psychedelic mushrooms containing psilocybin and related tryptamines have long been used for ethnomycological purposes, but emerging evidence points to the potential therapeutic value of these mushrooms to address modern neurological, psychiatric health, and related disorders. As a result, psilocybin containing mushrooms represent a re-emerging frontier for mycological, biochemical, neuroscience, and pharmacology research. This work presents crucial information related to traditional use of psychedelic mushrooms, as well as research trends and knowledge gaps related to their diversity and distribution, technologies for quantification of tryptamines and other tryptophan-derived metabolites, as well as biosynthetic mechanisms for their production within mushrooms. In addition, we explore the current state of knowledge for how psilocybin and related tryptamines are metabolized in humans and their pharmacological effects, including beneficial and hazardous human health implications. Finally, we describe opportunities and challenges for investigating the production of psychedelic mushrooms and metabolic engineering approaches to alter secondary metabolite profiles using biotechnology integrated with machine learning. Ultimately, this critical review of all aspects related to psychedelic mushrooms represents a roadmap for future research efforts that will pave the way to new applications and refined protocols.


Assuntos
Agaricales , Alucinógenos , Humanos , Alucinógenos/uso terapêutico , Alucinógenos/farmacologia , Psilocibina/farmacologia , Psilocibina/uso terapêutico , Agaricales/metabolismo , Triptaminas/metabolismo , Biotecnologia , Biologia
15.
J Environ Manage ; 344: 118742, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37573696

RESUMO

In Europe, rapeseed is a common oilseed crop, resulting in the production of 20 million tons of rapeseed press cake yearly. This press cake can be further upcycled and a protein fraction can be extracted for food purposes, leaving de-proteinized fiber-rich residues. This study examined the use of these residues in the production of oyster mushrooms (Pleurotus ostreatus) and of the spent substrate as feed, since mushroom cultivation may improve the feed properties of substrate. In terms of mushroom production, the addition of rapeseed press residues was beneficial, giving significantly higher biological efficiency (BE = 93.1 ± 11.0%) compared with the control, sugar beet pulp substrate (70.0 ± 6.6%). This increase in productivity can most likely be explained by higher energy content in the substrate supplemented with lipid-rich rapeseed residues. Despite differences in BE between the substrates, high similarity was observed in lipid composition of the fruiting bodies (lipid profile dominated by linoleic acid (18:2), palmitic acid (16:0), and oleic acid (18:1)), and in protein and moisture content. After mushroom harvest, approximately 70% of the initial dry weight of both substrates remained as a possible feed source. Both substrates had significantly lower levels of carbohydrates and unchanged neutral detergent fiber content after mushroom harvest, and both gave lower in vitro digestibility, total gas production, and methane production. However, protein concentration differed between the substrates, with the highest concentration (15.8% of dry weight) found in spent substrate containing rapeseed press residues. The result of the present study suggests that the de-proteinized rapeseed press residue is a resource well-suited for use in the production of mushrooms and feed.


Assuntos
Agaricales , Brassica napus , Brassica rapa , Pleurotus , Pleurotus/química , Pleurotus/metabolismo , Agaricales/química , Agaricales/metabolismo , Lipídeos
16.
Int J Med Mushrooms ; 25(7): 13-23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585313

RESUMO

Macrocybe lobayensis owe popularity in several traditional cultures not only for delectable taste but also for its nutraceutical profile conveying great health benefits. Previous investigations have enumerated several bioactivities of the valuable mushroom such as antioxidant, anti-ageing, immune-modulation, and anti-tumor properties where polysaccharides played the key role. Macrofungi polymers are generally isolated by the conventional hot water process discarding the residue which still contains plenty of therapeutic components. The present study thus aimed to re-use such leftover of the edible macrofungus by immersing it in NaOH solution at high temperature supporting circular economy. Consequently a polysaccharide fraction, namely ML-HAP, was isolated that was found to be consisted of a homogenous heteropolysaccharide with molecular weight of ~ 128 kDa and ß-glucan as the chief ingredient as evident by spectroscopy, gel-permeation chromatography, high performance thin-layer chromatography, and Fourier transform infrared. Antioxidant activity assays revealed that the macromolecules possess good radical scavenging, metal ion binding and reducing power. Nevertheless, strong immune-potentiation was also recorded as the extract triggered murine macrophage cell viability, pinocytosis, nitric oxide production and morpho-dynamics within 24 h where the best effect was executed at the level of 100 µg/mL. Altogether, the polysaccharides extracted from M. lobayensis exhibited a potent application prospect in functional food, pharmaceutical, nutraceutical and health care industries that could raise economic value of the underexplored mushroom.


Assuntos
Agaricales , Basidiomycota , Animais , Camundongos , Álcalis , Frutas/metabolismo , Agaricales/metabolismo , Polissacarídeos/química , Antioxidantes/química , Basidiomycota/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Molecules ; 28(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37570902

RESUMO

Among the toxic metabolites of the fungal world, those that, due to their strong biological effect, can seriously (even fatally) damage the life processes of humans (and certain groups of animals) stand out. Amatoxin-containing mushrooms and the poisonings caused by them stand out from the higher fungi, the mushrooms. There are already historical data and records about such poisonings, but scientific research on the responsible molecules began in the middle of the last century. The goals of this review work are as follows: presentation of the cosmopolitan mushroom species that produce amanitins (which are known from certain genera of four mushroom families), an overview of the chemical structure and specific properties of amanitins, a summary of the analytical methods applicable to them, a presentation of the "medical history" of poisonings, and a summary of the therapeutic methods used so far. The main responsible molecules (the amanitins) are bicyclic octapeptides, whose structure is characterized by an outer loop and an inner loop (bridge). It follows from the unusual properties of amanitins, especially their extreme stability (against heat, the acidic pH of the medium, and their resistance to human, and animal, digestive enzymes), that they are absorbed almost without hindrance and quickly transported to our vital organs. Adding to the problems is that accidental consumption causes no noticeable symptoms for a few hours (or even 24-36 h) after consumption, but the toxins already damage the metabolism of the target organs and the synthesis of nucleic acid and proteins. The biochemical catastrophe of the cells causes irreversible structural changes, which lead to necrotic damage (in the liver and kidneys) and death. The scientific topicality of the review is due to the recent publication of new data on the probable antidote molecule (ICR: indocyanine green) against amanitins. Further research can provide a new foundation for the therapeutic treatment of poisonings, and the toxicological situation, which currently still poses a deadly threat, could even be tamed into a controllable problem. We also draw attention to the review conclusions, as well as the mycological and social tasks related to amanitin poisonings (prevention of poisonings).


Assuntos
Agaricales , Amanitinas , Intoxicação Alimentar por Cogumelos , Amanitinas/química , Amanitinas/isolamento & purificação , Amanitinas/farmacologia , Amanitinas/envenenamento , Agaricales/química , Agaricales/classificação , Agaricales/metabolismo , Humanos , Animais , Intoxicação Alimentar por Cogumelos/etiologia , Intoxicação Alimentar por Cogumelos/prevenção & controle , Intoxicação Alimentar por Cogumelos/terapia
18.
J Biosci Bioeng ; 136(4): 278-286, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37550133

RESUMO

Pharmacological intervention of circadian rhythms is a potentially useful approach for ameliorating various health problems caused by disturbed circadian rhythms including sleep disorder and metabolic diseases. To find compounds that affect circadian rhythms, we screened mushroom extracts using mouse cells expressing the luciferase gene under the control of the mouse Bmal1 promoter. The culture filtrate extract from the basidiomycete Cyclocybe erebia enhanced the oscillation of bioluminescence caused by the expression of the luciferase gene and prolonged the period of bioluminescence. Bioassay-guided fractionation of the extract resulted in purification of compounds 1 and 2. Spectroscopic analyses along with single-crystal X-ray diffraction analysis, revealed that these compounds were diterpenoids with a unique skeleton and a fused ring system comprising 3-, 7-, and 5-membered rings. Compounds 1 and 2 were named cyclocircadins A and B, respectively. These findings suggested that natural diterpenoids could be a source of compounds with the activity affecting circadian rhythms.


Assuntos
Fatores de Transcrição ARNTL , Agaricales , Camundongos , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Ritmo Circadiano/genética , Agaricales/genética , Agaricales/metabolismo , Luciferases/metabolismo , Fibroblastos
19.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37511472

RESUMO

The fungus Moniliophthora perniciosa secretes protein effectors that manipulate the physiology of the host plant, but few effectors of this fungus have had their functions confirmed. We performed functional characterization of a promising candidate effector of M. perniciosa. The inoculation of rBASIDIN at 4 µmol L-1 in the mesophyll of leaflets of Solanum lycopersicum caused symptoms of shriveling within 6 h without the presence of necrosis. However, when sprayed on the plant at a concentration of 11 µmol L-1, it caused wilting symptoms only 2 h after application, followed by necrosis and cell death at 48 h. rBASIDIN applied to Theobroma cacao leaves at the same concentration caused milder symptoms. rBASIDIN caused hydrogen peroxide production in leaf tissue, damaging the leaf membrane and negatively affecting the photosynthetic rate of Solanum lycopersicum plants. Phylogenetic analysis indicated that BASIDIN has orthologs in other phytopathogenic basidiomycetes. Analysis of the transcripts revealed that BASIDIN and its orthologs are expressed in different fungal species, suggesting that this protein is differentially regulated in these basidiomycetes. Therefore, the results of applying BASIDIN allow the inference that it is an effector of the fungus M. perniciosa, with a strong potential to interfere in the defense system of the host plant.


Assuntos
Agaricales , Basidiomycota , Cacau , Cytisus , Cacau/microbiologia , Filogenia , Agaricales/metabolismo , Basidiomycota/genética , Necrose , Doenças das Plantas/microbiologia
20.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513265

RESUMO

Medicinal mushrooms, e.g., Lion's Mane (Hericium erinaceus (Bull.) Pers.), Reishi (Ganoderma lucidum (Curtis) P. Karst.), Chaga (Inonotus obliquus (Ach. ex Pers.) Pilát), Cordyceps (Ophiocordyceps sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones and Spatafora), Shiitake (Lentinula edodes (Berk.) Pegler), and Turkey Tail (Trametes versicolor (L.) Lloyd), are considered new-generation foods and are of growing interest to consumers. They are characterised by a high content of biologically active compounds, including (1,3)(1,6)-ß-d-glucans, which are classified as dietary fibre, triterpenes, phenolic compounds, and sterols. Thanks to their low-fat content, they are a low-calorie product and are classified as a functional food. They have a beneficial effect on the organism through the improvement of its overall health and nutritional level. The biologically active constituents contained in medicinal mushrooms exhibit anticancer, antioxidant, antidiabetic, and immunomodulatory effects. In addition, these mushrooms accelerate metabolism, help fight obesity, and slow down the ageing processes thanks to their high antioxidant activity. The vast therapeutic properties of mushrooms are still not fully understood. Detailed mechanisms of the effects of medicinal mushrooms on the human organism still require long-term clinical studies to confirm their nutraceutical effects, their safety of use, and their dosage. Medicinal mushrooms have great potential to be used in the design of innovative functional foods. There is a need for further research on the possibility of incorporating mushrooms into food products to assess the interactions of their bioactive substances with ingredients in the food matrix. This review focuses on the properties of selected medicinal mushrooms and their effects on the human organism and presents current knowledge on the possibilities of their use in the production of functional foods.


Assuntos
Agaricales , Reishi , Humanos , Agaricales/metabolismo , Alimento Funcional , Trametes , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Valor Nutritivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...